IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Stochastic Approximation Monte Carlo for MLP Learning

Stochastic Approximation Monte Carlo for MLP Learning
View Sample PDF
Author(s): Faming Liang (Texas A&M University, USA)
Copyright: 2009
Pages: 8
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch217

Purchase

View Stochastic Approximation Monte Carlo for MLP Learning on the publisher's website for pricing and purchasing information.

Abstract

Over the past several decades, multilayer perceptrons (MLPs) have achieved increased popularity among scientists, engineers, and other professionals as tools for knowledge representation. Unfortunately, there is no a universal architecture which is suitable for all problems. Even with the correct architecture, frustrating problems of connection weights training still remain due to the rugged nature of the energy landscape of MLPs. The energy function often refers to the sum-of-square error function for conventional MLPs and the negative logposterior density function for Bayesian MLPs. This article presents a Monte Carlo method that can be used for MLP learning. The main focus is on how to apply the method to train connection weights for MLPs. How to apply the method to choose the optimal architecture and to make predictions for future values will also be discussed, but within the Bayesian framework.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom