IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Stereo Vision Depth Estimation Methods for Robotic Applications

Stereo Vision Depth Estimation Methods for Robotic Applications
View Sample PDF
Author(s): Lazaros Nalpantidis (Royal Institute of Technology (KTH), Sweden)and Antonios Gasteratos (Democritus University of Thrace, Greece)
Copyright: 2014
Pages: 21
Source title: Robotics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-4607-0.ch071

Purchase

View Stereo Vision Depth Estimation Methods for Robotic Applications on the publisher's website for pricing and purchasing information.

Abstract

Vision is undoubtedly the most important sense for humans. Apart from many other low and higher level perception tasks, stereo vision has been proven to provide remarkable results when it comes to depth estimation. As a result, stereo vision is a rather popular and prosperous subject among the computer and machine vision research community. Moreover, the evolution of robotics and the demand for vision-based autonomous behaviors has posed new challenges that need to be tackled. Autonomous operation of robots in real working environments, given limited resources requires effective stereo vision algorithms. This chapter presents suitable depth estimation methods based on stereo vision and discusses potential robotic applications.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom