The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Software Module Clustering Using Bio-Inspired Algorithms
Abstract
Nature has always been a source of inspiration for human beings. Large numbers of complex optimization problems have been solved by the techniques inspired by nature. Software modularization is one of such complex problems that have been encountered by software engineers. It is the process of organizing modules of a software system into optimal clusters. In this chapter, some bio-inspired algorithms such as bat, artificial bee colony, black hole and firefly algorithm have been proposed for the cause of software modularization. The hybrid of these algorithms with crossover and mutation operators of the genetic algorithm has also been proposed. All the algorithms along with their hybrids are tested on seven benchmark open source software systems. It has been evaluated from the results thus obtained that the hybrid of these algorithms proved to optimize better than the existing genetic and hill-climbing approaches.
Related Content
G. Sowmya, R. Sridevi, K. S. Sadasiva Rao, Sri Ganesh Shiramshetty.
© 2025.
36 pages.
|
Srinidhi Vasan.
© 2025.
20 pages.
|
Arul Kumar Natarajan, Yash Desai, Pravin R. Kshirsagar, Kamal Upreti, Tan Kuan Tak.
© 2025.
26 pages.
|
R. Leisha, Katelyn Jade Medows, Michael Moses Thiruthuvanathan, S. Ravindra Babu, Prakash Divakaran, Vandana Mishra Chaturvedi.
© 2025.
40 pages.
|
Rituraj Jain, Kumar J. Parmar, Kushal Gaddamwar, Damodharan Palaniappan, T. Premavathi, Yatharth Srivastava.
© 2025.
32 pages.
|
Anya Behera, A. Vedashree, M. Rupesh Kumar, Kamal Upreti.
© 2025.
30 pages.
|
Neha Bagga, Sheetal Kalra, Parminder Kaur.
© 2025.
30 pages.
|
|
|