IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Single SNN Architecture for Classical and Operant Conditioning Using Reinforcement Learning

Single SNN Architecture for Classical and Operant Conditioning Using Reinforcement Learning
View Sample PDF
Author(s): Etienne Dumesnil (University of Quebec at Montreal, Canada), Philippe-Olivier Beaulieu (University of Quebec at Montreal, Canada)and Mounir Boukadoum (University of Quebec at Montreal, Canada)
Copyright: 2020
Pages: 25
Source title: Robotic Systems: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-1754-3.ch041

Purchase

View Single SNN Architecture for Classical and Operant Conditioning Using Reinforcement Learning on the publisher's website for pricing and purchasing information.

Abstract

A bio-inspired robotic brain is presented where the same spiking neural network (SNN) can implement five variations of learning by conditioning (LC): classical conditioning (CC), and operant conditioning (OC) with positive/negative reinforcement/punishment. In all cases, the links between input stimuli, output actions, reinforcements and punishments are strengthened depending on the stability of the delays between them. To account for the parallel processing nature of neural networks, the SNN is implemented on a field-programmable gate array (FPGA), and the neural delays are extracted via an adaptation of the synapto-dendritic kernel adapting neuron (SKAN) model, for a low resource demanding FPGA implementation of the SNN. A custom robotic platform successfully tested the ability of the proposed architecture to implement the five LC behaviors. Hence, this work contributes to the engineering field by proposing a scalable low resource demanding architecture for adaptive systems, and the cognitive field by suggesting that both CC and OC can be modeled as a single cognitive architecture.

Related Content

Brij B. Gupta, Akshat Gaurav, Francesco Colace. © 2025. 16 pages.
Akshat Gaurav, Varsha Arya. © 2025. 16 pages.
Brij B. Gupta, Jinsong Wu. © 2025. 22 pages.
Purwadi Agus Darwinto, Agung Mulyo Widodo, Nilla Perdana Agustina, Kadek Dwi Wahyuadnyana, Mosiur Rahaman. © 2025. 30 pages.
Mosiur Rahaman, Karisma Trinda Putra, Bambang Irawan, Totok Ruki Biyanto. © 2025. 30 pages.
Shaurya Katna, Sunil K. Singh, Sudhakar Kumar, Divyansh Manro, Amit Chhabra, Sunil Kumar Sharma. © 2025. 22 pages.
Kwok Tai Chui, Varsha Arya, Akshat Gaurav, Shavi Bansal, Ritika Bansal. © 2025. 22 pages.
Body Bottom