IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Sequence Processing with Recurrent Neural Networks

Sequence Processing with Recurrent Neural Networks
View Sample PDF
Author(s): Chun-Cheng Peng (University of London, UK)and George D. Magoulas (University of London, UK)
Copyright: 2009
Pages: 7
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch207

Purchase

View Sequence Processing with Recurrent Neural Networks on the publisher's website for pricing and purchasing information.

Abstract

Sequence processing involves several tasks such as clustering, classification, prediction, and transduction of sequential data which can be symbolic, non-symbolic or mixed. Examples of symbolic data patterns occur in modelling natural (human) language, while the prediction of water level of River Thames is an example of processing non-symbolic data. If the content of a sequence will be varying through different time steps, the sequence is called temporal or time-series. In general, a temporal sequence consists of nominal symbols from a particular alphabet, while a time-series sequence deals with continuous, real-valued elements (Antunes & Oliverira, 2001). Processing both these sequences mainly consists of applying the current known patterns to produce or predict the future ones, while a major difficulty is that the range of data dependencies is usually unknown. Therefore, an intelligent system with memorising capability is crucial for effective sequence processing and modelling. A recurrent neural network (RNN) is an artificial neural network in which self-loop and backward connections between nodes are allowed (Lin & Lee 1996; Schalkoff, 1997). Comparing to feedforward neural networks, RNNs are well-known for their power to memorise time dependencies and model nonlinear systems. RNNs can be trained from examples to map input sequences to output sequences and in principle they can implement any kind of sequential behaviour. They are biologically more plausible and computationally more powerful than other modelling approaches, such as Hidden Markov Models (HMMs), which have non-continuous internal states, feedforward neural networks and Support Vector Machines (SVMs), which do not have internal states at all. In this article, we review RNN architectures and we discuss the challenges involved in training RNNs for sequence processing. We provide a review of learning algorithms for RNNs and discuss future trends in this area.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom