IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Secure Health Monitoring in the Cloud Using Homomorphic Encryption: A Branching-Program Formulation

Secure Health Monitoring in the Cloud Using Homomorphic Encryption: A Branching-Program Formulation
View Sample PDF
Author(s): Scott Ames (University of Rochester, USA), Muthuramakrishnan Venkitasubramaniam (University of Rochester, USA), Alex Page (University of Rochester, USA), Ovunc Kocabas (University of Rochester, USA)and Tolga Soyata (University of Rochester, USA)
Copyright: 2015
Pages: 37
Source title: Enabling Real-Time Mobile Cloud Computing through Emerging Technologies
Source Author(s)/Editor(s): Tolga Soyata (University of Rochester, USA)
DOI: 10.4018/978-1-4666-8662-5.ch004

Purchase

View Secure Health Monitoring in the Cloud Using Homomorphic Encryption: A Branching-Program Formulation on the publisher's website for pricing and purchasing information.

Abstract

Extending cloud computing to medical software, where the hospitals rent the software from the provider sounds like a natural evolution for cloud computing. One problem with cloud computing, though, is ensuring the medical data privacy in applications such as long term health monitoring. Previously proposed solutions based on Fully Homomorphic Encryption (FHE) completely eliminate privacy concerns, but are extremely slow to be practical. Our key proposition in this paper is a new approach to applying FHE into the data that is stored in the cloud. Instead of using the existing circuit-based programming models, we propose a solution based on Branching Programs. While this restricts the type of data elements that FHE can be applied to, it achieves dramatic speed-up as compared to traditional circuit-based methods. Our claims are proven with simulations applied to real ECG data.

Related Content

Dina Darwish. © 2024. 43 pages.
Kassim Kalinaki, Musau Abdullatif, Sempala Abdul-Karim Nasser, Ronald Nsubuga, Julius Kugonza. © 2024. 23 pages.
Yogita Yashveer Raghav, Ramesh Kait. © 2024. 17 pages.
Renuka Devi Saravanan, Shyamala Loganathan, Saraswathi Shunmuganathan. © 2024. 21 pages.
Veera Talukdar, Ardhariksa Zukhruf Kurniullah, Palak Keshwani, Huma Khan, Sabyasachi Pramanik, Ankur Gupta, Digvijay Pandey. © 2024. 30 pages.
Dharmesh Dhabliya, Sukhvinder Singh Dari, Nitin N. Sakhare, Anish Kumar Dhablia, Digvijay Pandey, Balakumar Muniandi, A. Shaji George, A. Shahul Hameed, Pankaj Dadheech. © 2024. 9 pages.
Avtar Singh, Shobhana Kashyap. © 2024. 11 pages.
Body Bottom