Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Satellite-Based Mobile Multiservices Platform

Satellite-Based Mobile Multiservices Platform
View Sample PDF
Author(s): Alexander Markhasin (Siberian State University of Telecommunications and Information Sciences, Russia)
Copyright: 2009
Pages: 8
Source title: Encyclopedia of Information Science and Technology, Second Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-60566-026-4.ch533


View Satellite-Based Mobile Multiservices Platform on the publisher's website for pricing and purchasing information.


The future fourth generation (4G) of the satellite-based wireless and mobile communications is particularly important for global providing of the mobile broadband global information technologies (IT) multi-services and mobile e-applications (m-applications) for geographically dispersed mass users in support of anytime, anywhere, and any required quality of service (QoS) capabilities in a low-cost way. The recent broadband satellite systems described in Ivancic et al. (1999), Evans et al. (2005), Skinnemoen, Vermesan, Iuoras, Adams, and Lobao (2005) are based mainly on centralized low-­meshed architecture with very high traffic concentration. Such structure is not adequate in context of the traffic topology for rural, remote, and difficult for access (RRD) regions. Markhasin (2001) noted that the cost of centralized systems is unacceptably large for deployment of future mass broadband communications in RRD regions (North Siberia, Scandinavia, Greenland, Canada, Alaska, Central and South East Asia, South America, Australia, etc.). As it was shown in Markhasin (2001, 2004), the future low-cost IT multi-service platforms for RRD regions can be built optimal on a mix of the terrestrial and satellite-based mobile and wireless communications with radically distributed (neural-­like) all-­IP/ATM architecture that requires breakthrough steps for search advanced satellite, mobile, and wireless 4G technologies. Markhasin (1996) and Frigon, Chan, and Leung (2001) noted that the improvement of medium access control (MAC) protocols has a dominant effect on ensuring the breakthrough features of future QoS-aware mobile and wireless technologies. The survey and analytical comparison of the fundamental principles of QoS-oriented MAC protocols were described in Markhasin, Olariu, and Todorova (2004, 2005). The radically novel multi-­functional MAC technology (MFMAC) for long-delay space mediums with fully distributed dynamic control of QoS, traffic parameters, and bandwidth resources was proposed in Markhasin (2001, 2004). This article will be focused on future QoS-aware, satellite-based, fully distributed, mesh, and scalable mobile IT multi-service and m-Applications platform’s networking technology 4G for RRD regions.

Related Content

Christine Kosmopoulos. © 2022. 22 pages.
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh. © 2022. 21 pages.
Rajkumari Sofia Devi, Ch. Ibohal Singh. © 2022. 21 pages.
Ida Fajar Priyanto. © 2022. 16 pages.
Murtala Ismail Adakawa. © 2022. 27 pages.
Shimelis Getu Assefa. © 2022. 17 pages.
Angela Y. Ford, Daniel Gelaw Alemneh. © 2022. 22 pages.
Body Bottom