The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Role of Artificial Neural Network for Prediction of Gait Parameters and Patterns
Abstract
Walking is very important exercise. Walking is characterized by gait. Gait defines the bipedal and forward propulsion of center of gravity of the human body. This chapter describes the role of artificial neural network (ANN) for prediction of gait parameters and patterns for human locomotion. The artificial neural network is a mathematical model. It is computational system inspired by the structure, processing method, and learning ability of a biological brain. According to bio-mechanics perspective, the neural system is utilized to check the non-direct connections between datasets. Also, ANN model in gait application is more desired than bio-mechanics strategies or statistical methods. It produces models of gait patterns, predicts horizontal ground reactions forces (GRF), vertical GRF, recognizes examples of stand, and predicts incline speed and distance of walking.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|