IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Review of Current and Emerging Approaches for Quantitative Nanostructure-Activity Relationship Modeling: The Case of Inorganic Nanoparticles

Review of Current and Emerging Approaches for Quantitative Nanostructure-Activity Relationship Modeling: The Case of Inorganic Nanoparticles
View Sample PDF
Author(s): Natalia Sizochenko (Interdisciplinary Center for Nanotoxicity, Jackson State University, USA)and Jerzy Leszczynski (Interdisciplinary Center for Nanotoxicity, Jackson State University, USA)
Copyright: 2017
Pages: 18
Source title: Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-1798-6.ch070

Purchase


Abstract

Quantitative structure-activity/property relationships (QSAR/QSPR) approaches that have been applied with success in a number of studies are currently used as indispensable tools in the computational analysis of nanomaterials. Evolution of nano-QSAR methodology to the ranks of novel field of knowledge has resulted in the development of new so-called “nano-descriptors” and extension of the statistical approaches domain. This brief review focuses on the critical analysis of advantages and disadvantages of existing methods of nanoparticles' representation and their analysis in framework of structure-activity relationships. It summarizes recent QSAR/QSPR studies on inorganic nanomaterials. Here the authors describe practices for the QSAR modeling of inorganic nanoparticles, existing datasets, and discuss applicable descriptors and future perspectives of this field. About 50 different (Q)SAR/SPR models for inorganic nanomaterials have been developed during the past 5 years. An analysis of these peer reviewed publications shows that the most popular property of nanoparticles modeled via QSAR is their toxicity towards different bacteria, cell lines, and microorganisms. It has been clearly shown how nano-QSAR can contribute to the elucidation of toxicity mechanisms and different physical properties of inorganic nanomaterials.

Related Content

Erfan Nouri, Alireza Kardan, Vahid Mottaghitalab. © 2024. 33 pages.
Mudassar Shahzad, Noor-ul-Huda Altaf, Muhammad Ayyaz, Sehrish Maqsood, Tayyba Shoukat, Mumtaz Ali, Muhammad Yasin Naz, Shazia Shukrullah. © 2024. 31 pages.
Erfan Nouri, Alireza Kardan, Vahid Mottaghitalab. © 2024. 32 pages.
Davronjon Abduvokhidov, Zhitong Chen, Jamoliddin Razzokov. © 2024. 16 pages.
Shahid Ali. © 2024. 25 pages.
Aamir Shahzad, Rabia Waris, Muhammad Kashif, Alina Manzoor, Maogang He. © 2024. 13 pages.
Soraya Trabelsi, Ezeddine Sediki. © 2024. 23 pages.
Body Bottom