The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Reconstruction of Missing Hourly Precipitation Data to Increase Training Data Set for ANN
Abstract
This paper investigates the hourly precipitation estimation capacities of ANN using raw data and reconstructed data using proposed Precipitation Sliding Window Period (PSWP) method. The precipitation data from 11 Automatic Weather Station (AWS) of Delhi has been obtained from Jan 2015 to Feb 2016. The proposed PSWP method uses both time and space dimension to fill the missing precipitation values. Hourly precipitation follows patterns in particular period along with its neighbor stations. Based on these patterns of precipitation, Local Cluster Sliding Window Period (LCSWP) and Global Cluster Sliding Window Period (GCSWP) are defined for single AWS and all AWSs respectively. Further, GCSWP period is classified into four different categories to fill the missing precipitation data based on patterns followed in it. The experimental results indicate that ANN trained with reconstructed data has better estimation results than the ANN trained with raw data. The average RMSE for ANN trained with raw data is 0.44 and while that for neural network trained with reconstructed data is 0.34.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|