IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Prototype Based Classification in Bioinformatics

Prototype Based Classification in Bioinformatics
View Sample PDF
Author(s): Frank-M. Schleif (University of Leipzig, Germany), Thomas Villmann (University of Leipzig, Germany)and Barbara Hammer (Technical University of Clausthal, Germany)
Copyright: 2009
Pages: 6
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch196

Purchase

View Prototype Based Classification in Bioinformatics on the publisher's website for pricing and purchasing information.

Abstract

Bioinformatics has become an important tool to support clinical and biological research and the analysis of functional data, is a common task in bioinformatics (Schleif, 2006). Gene analysis in form of micro array analysis (Schena, 1995) and protein analysis (Twyman, 2004) are the most important fields leading to multiple sub omics-disciplines like pharmacogenomics, glycoproteomics or metabolomics. Measurements of such studies are high dimensional functional data with few samples for specific problems (Pusch, 2005). This leads to new challenges in the data analysis. Spectra of mass spectrometric measurements are such functional data requiring an appropriate analysis (Schleif, 2006). Here we focus on the determination of classification models for such data. In general, the spectra are transformed into a vector space followed by training a classifier (Haykin, 1999). Hereby the functional nature of the data is typically lost. We present a method which takes this specific data aspects into account. A wavelet encoding (Mallat, 1999) is applied onto the spectral data leading to a compact functional representation. Subsequently the Supervised Neural Gas classifier (Hammer, 2005) is applied, capable to handle functional metrics as introduced by Lee & Verleysen (Lee, 2005). This allows the classifier to utilize the functional nature of the data in the modelling process. The presented method is applied to clinical proteome data showing good results and can be used as a bioinformatics method for biomarker discovery.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom