IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Protein Secondary Structure Prediction Approaches: A Review With Focus on Deep Learning Methods

Protein Secondary Structure Prediction Approaches: A Review With Focus on Deep Learning Methods
View Sample PDF
Author(s): Fawaz H. H. Mahyoub (School of Computer Sciences, Universiti Sains Malaysia, Malaysia)and Rosni Abdullah (School of Computer Sciences, Universiti Sains Malaysia, Malaysia)
Copyright: 2024
Pages: 24
Source title: Research Anthology on Bioinformatics, Genomics, and Computational Biology
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/979-8-3693-3026-5.ch058

Purchase

View Protein Secondary Structure Prediction Approaches: A Review With Focus on Deep Learning Methods on the publisher's website for pricing and purchasing information.

Abstract

The prediction of protein secondary structure from a protein sequence provides useful information for predicting the three-dimensional structure and function of the protein. In recent decades, protein secondary structure prediction systems have been improved benefiting from the advances in computational techniques as well as the growth and increased availability of solved protein structures in protein data banks. Existing methods for predicting the secondary structure of proteins can be roughly subdivided into statistical, nearest-neighbor, machine learning, meta-predictors, and deep learning approaches. This chapter provides an overview of these computational approaches to predict the secondary structure of proteins, focusing on deep learning techniques, with highlights on key aspects in each approach.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom