The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Prediction of Biosorption Capacity Using Artificial Neural Network Modeling and Genetic Algorithm: Prediction of Biosorption Capacity
Abstract
Artificial neural network model is applied for the prediction of the biosorption capacity of living cells of Bacillus cereus for the removal of chromium (VI) ions from aqueous solution. The maximum biosorption capacity of living cells of Bacillus cereus for chromium (VI) was found to be 89.24% at pH 7.5, equilibrium time of 60 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. The biosorption data of chromium (VI) ions collected from laboratory scale experimental set up is used to train a back propagation (BP) learning algorithm having 4-7-1 architecture. The model uses tangent sigmoid transfer function at input to hidden layer whereas a linear transfer function is used at output layer. The data is divided into training (75%) and testing (25%) sets. Comparison between the model results and experimental data gives a high degree of correlation R2 = 0.984 indicating that the model is able to predict the sorption efficiency with reasonable accuracy. Bacillus cereus biomass is characterized using AFM and FTIR.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|