IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Prediction of Compound-protein Interactions with Machine Learning Methods

Prediction of Compound-protein Interactions with Machine Learning Methods
View Sample PDF
Author(s): Yoshihiro Yamanishi (Mines ParisTech, Institut Curie, Inserm U900, France)and Hisashi Kashima (IBM Tokyo Research Laboratory, Japan)
Copyright: 2012
Pages: 15
Source title: Machine Learning: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-60960-818-7.ch315

Purchase

View Prediction of Compound-protein Interactions with Machine Learning Methods on the publisher's website for pricing and purchasing information.

Abstract

In silico prediction of compound-protein interactions from heterogeneous biological data is critical in the process of drug development. In this chapter the authors review several supervised machine learning methods to predict unknown compound-protein interactions from chemical structure and genomic sequence information simultaneously. The authors review several kernel-based algorithms from two different viewpoints: binary classification and dimension reduction. In the results, they demonstrate the usefulness of the methods on the prediction of drug-target interactions and ligand-protein interactions from chemical structure data and genomic sequence data.

Related Content

Bhargav Naidu Matcha, Sivakumar Sivanesan, K. C. Ng, Se Yong Eh Noum, Aman Sharma. © 2023. 60 pages.
Lavanya Sendhilvel, Kush Diwakar Desai, Simran Adake, Rachit Bisaria, Hemang Ghanshyambhai Vekariya. © 2023. 15 pages.
Jayanthi Ganapathy, Purushothaman R., Ramya M., Joselyn Diana C.. © 2023. 14 pages.
Prince Rajak, Anjali Sagar Jangde, Govind P. Gupta. © 2023. 14 pages.
Mustafa Eren Akpınar. © 2023. 9 pages.
Sreekantha Desai Karanam, Krithin M., R. V. Kulkarni. © 2023. 34 pages.
Omprakash Nayak, Tejaswini Pallapothala, Govind P. Gupta. © 2023. 19 pages.
Body Bottom