IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Phononic Engineering for Hot Carrier Solar Cells

Phononic Engineering for Hot Carrier Solar Cells
View Sample PDF
Author(s): Sana Laribi (Institute of Research and Development on Photovoltaic Energy, France), Arthur Le Bris (Institute of Research and Development on Photovoltaic Energy, France), Lun Mei Huang (Institute of Research and Development on Photovoltaic Energy, France), Par Olsson (Institute of Research and Development on Photovoltaic Energy, France)and Jean Francois Guillemoles (Institute of Research and Development on Photovoltaic Energy, France)
Copyright: 2014
Pages: 29
Source title: Nanotechnology: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-5125-8.ch053

Purchase

View Phononic Engineering for Hot Carrier Solar Cells on the publisher's website for pricing and purchasing information.

Abstract

The concept underlying the hot carrier solar cell is to slow the rate of photo-excited carrier cooling to allow time for the carriers to be collected while they are still at elevated energies (“hot”), and thus allowing higher voltages to be achieved from the cell. Significant reduction in carrier cooling has been observed in Quantum Well (QW) nano-structures at very high illumination intensities due to a “phonon bottleneck” mechanism. With the phononic gaps in nano-structures, the optical phonon lifetime can be prolonged by blocking the main phonon decay from optical branches to acoustical branches (such as the Klemens or Ridley decay channels). Si-based hot carrier cell is a very active topic and Si-Ge nano-structures are especially interesting for the application, as their fabrication process is well developed. In this chapter, the authors first analyse the operation of a hot carrier solar cell and lay down the general principles. They then discuss the opportunity of phonon engineering to improve the phonon bottleneck. Finally, they present how these can be modeled in nanostuctures comprising several thousand atoms, where true 3D phonon dispersion relations for Si-Ge nano-structures are obtained using first principles methods. The effects of the nano-structure size and geometry on the phonon dispersion relations are investigated. The possible phonon decay processes in the nano-structures are discussed and compared with the bulk crystal materials. The performance of calculated nano-structures on the hot carrier solar cell is evaluated with the acquired knowledge of phonon modes.

Related Content

Wassim Jaber. © 2024. 24 pages.
Hussein A.H. Jaber, Zahraa Saleh, Wassim Jaber, Adnan Badran, Hatem Nasser. © 2024. 17 pages.
Sakshi Garg, Kunal Arora, Sumita Singh, K. Nagarajan. © 2024. 20 pages.
Wassim Jaber. © 2024. 14 pages.
Ray Gutierrez Jr.. © 2024. 22 pages.
Wassim Jaber, Hussein A.H. Jaber, Ramzi Jaber, Zahraa Saleh. © 2024. 16 pages.
Zahraa Saleh, Wassim Jaber, Ali Jaber, Edmond Cheble, Mikhael Bechelany, Akram Hijazi, David Cornu, Ghassan Mahmoud Ibrahim. © 2024. 22 pages.
Body Bottom