The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Particle Swarms: Optimization Based on Sociocognition
Abstract
Particle swarm optimization is a computer paradigm that is based on human social influence and cognition. Candidate problem solutions are randomly initialized, and improvements are found through interactions among them. Social-psychological aspects of the algorithm are described, followed by implementation details. The particle swarm operates in three kinds of spaces, namely a topological space comprising the “social network” structure of the population, a parameter space of problem variables, and a one-dimensional evaluative space. Variations in the algorithm are described, and finally it is compared to evolutionary computation models.
Related Content
S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh.
© 2025.
16 pages.
|
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan.
© 2025.
22 pages.
|
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi.
© 2025.
22 pages.
|
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh.
© 2025.
24 pages.
|
U. Vignesh, Arpan Singh Parihar.
© 2025.
34 pages.
|
Sharmistha Dey, Krishan Veer Singh.
© 2025.
20 pages.
|
Kalpana Devi.
© 2025.
26 pages.
|
|
|