IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Optimizing Material Removal Rate Using Artificial Neural Network for Micro-EDM

Optimizing Material Removal Rate Using Artificial Neural Network for Micro-EDM
View Sample PDF
Author(s): Ananya Upadhyay (Birla Institute of Technology Mesra, India), Ved Prakash (Central Mechanical Engineering Research Institute (CSIR), India)and Vinay Sharma (Birla Institute of Technology Mesra, India)
Copyright: 2022
Pages: 24
Source title: Research Anthology on Artificial Neural Network Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-2408-7.ch039

Purchase

View Optimizing Material Removal Rate Using Artificial Neural Network for Micro-EDM on the publisher's website for pricing and purchasing information.

Abstract

Machining can be classified into conventional and unconventional processes. Unconventional Machining Process attracts researchers as it has many processes whose physics is still not that clear and they are highly in market-demand. To predict and understand the physics behind these processes soft computing is being used. Soft computing is an approach of computing which is based on the way a human brain learns and get trained to deal with different situations. Scope of this chapter is limited to one of the soft computing optimizing techniques that is artificial neural network (ANN) and to one of the unconventional machining processes, electrical discharge machining process. This chapter discusses about micromachining on Electric Discharge Machining, its working principle and problems associated with it. Solution to those problems is suggested with the addition of powder in dielectric fluid. The optimization of Material Removal Rate (MRR) is done with the help of ANN toolbox in MATLAB.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom