IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Optimal Fuzzy Cluster Partitioning by Crow Search Meta-Heuristic for Biomedical Data Analysis

Optimal Fuzzy Cluster Partitioning by Crow Search Meta-Heuristic for Biomedical Data Analysis
View Sample PDF
Author(s): Janmenjoy Nayak (Aditya Institute of Technology and Management, India), Bighnaraj Naik (Veer Surendra Sai University of Technology (VSSUT), Odisha, India), Pandit Byomakesha Dash (Veer Surendra Sai University of Technology, Burla, India)and Danilo Pelusi (University of Teramo, Italy)
Copyright: 2024
Pages: 18
Source title: Research Anthology on Bioinformatics, Genomics, and Computational Biology
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/979-8-3693-3026-5.ch055

Purchase

View Optimal Fuzzy Cluster Partitioning by Crow Search Meta-Heuristic for Biomedical Data Analysis on the publisher's website for pricing and purchasing information.

Abstract

Biomedical data is often more unstructured in nature, and biomedical data processing task is becoming more complex day by day. Thus, biomedical informatics requires competent data analysis and data mining techniques for designing decision support system's framework to solve clinical and heathcare-related issues. Due to increasingly large and complex data sets and demand of biomedical informatics research, researchers are attracted towards automated machine learning models. This paper is proposed to design an efficient machine learning model based on fuzzy c-means with meta-heuristic optimizations for biomedical data analysis and clustering. The main contributions of this paper are 1) projecting an efficient machine learning model based on fuzzy c-means and meta-heuristic optimization for biomedical data classification, 2) employing benchmark validation techniques and critical hypothesises testing, and 3) providing a background for biomedical data processing with a view of data processing and mining.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom