The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
On the Convergence and Diversity of Pareto Fronts Using Swarm Intelligence Metaheuristics for Constrained Search Space
Abstract
This article reviews existing constraint-handling techniques then presents a new design for Swarm Intelligence Metaheuristics (SIM) to deal with constrained multi-objective optimization problems (CMOPs). This new design aims to investigate potential effects of leader concepts that characterize the dynamic of SIM in the hope to help the population to reach Pareto optimal solutions in a constrained search space. The new leader-based constraint handling mechanism is incorporated in Constrained Multi-Objective Cuckoo Search (C-MOCS) and Constrained Multi-Objective Particle Swarm Optimization (C-MOPSO) as specific instances of a more general class of SIMs. The experimental results are carried out using a set of six well-known test functions and two performance metrics. The convergence and diversity of C-MOCS and C-MOPSO are analysed and compared to the well-known Multi-Objective Evolutionary Algorithm (MOEA) NSGA-II and discussed based on the obtained results.
Related Content
Brij B. Gupta, Akshat Gaurav, Francesco Colace.
© 2025.
16 pages.
|
Akshat Gaurav, Varsha Arya.
© 2025.
16 pages.
|
Brij B. Gupta, Jinsong Wu.
© 2025.
22 pages.
|
Purwadi Agus Darwinto, Agung Mulyo Widodo, Nilla Perdana Agustina, Kadek Dwi Wahyuadnyana, Mosiur Rahaman.
© 2025.
30 pages.
|
Mosiur Rahaman, Karisma Trinda Putra, Bambang Irawan, Totok Ruki Biyanto.
© 2025.
30 pages.
|
Shaurya Katna, Sunil K. Singh, Sudhakar Kumar, Divyansh Manro, Amit Chhabra, Sunil Kumar Sharma.
© 2025.
22 pages.
|
Kwok Tai Chui, Varsha Arya, Akshat Gaurav, Shavi Bansal, Ritika Bansal.
© 2025.
22 pages.
|
|
|