The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Novel PSSM-Based Approaches for Gene Identification Using Support Vector Machine
Abstract
By understanding the function of each protein encoded in genome, the molecular mechanism of the cell can be recognized. In genome annotation field, several methods or techniques have been developed to locate or predict the patterns of genes in genome sequence. However, recognizing corresponding gene of a given protein sequence using conventional tools is inherently complicated and error prone. This paper first focuses on the issue of gene prediction and its challenges. The authors then present a novel method for identifying genes that involves a two-step process. First the research presents new features extracted from protein sequences using a position specific scoring matrix (PSSM). The PSSM profiles are converted into uniform numeric representation. Then, a new structured approach has been applied on PSSM vector which uses a decision tree-based technique for obtaining rules. Finally, the rules of single class are joined together to form a matrix which is then given as an input to SVM for classification purpose. The rules derived from algorithm correspond to genes. The authors also introduce another approach for predicting genes based on PSSM using SVM. Both the methods have been implemented on genome DNAset dataset. Empirical evaluation shows that PSSM based SAFARI approach produces better results.
Related Content
Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos.
© 2025.
22 pages.
|
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri.
© 2025.
46 pages.
|
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo.
© 2025.
38 pages.
|
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi.
© 2025.
30 pages.
|
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi.
© 2025.
32 pages.
|
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi.
© 2025.
40 pages.
|
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi.
© 2025.
28 pages.
|
|
|