IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

New Hybrid Gene Selection-Sample Classification Method in Microarray Data

New Hybrid Gene Selection-Sample Classification Method in Microarray Data
View Sample PDF
Author(s): Chandra Das (Netaji Subhash Engineering College, India), Shilpi Bose (Netaji Subhash Engineering College, India), Sourav Dutta (Netaji Subhash Engineering College, India), Kuntal Ghosh (Indian Statistical Institute, India)and Samiran Chattopadhyay (Jadavpur University, India)
Copyright: 2024
Pages: 13
Source title: Research Anthology on Bioinformatics, Genomics, and Computational Biology
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/979-8-3693-3026-5.ch051

Purchase

View New Hybrid Gene Selection-Sample Classification Method in Microarray Data on the publisher's website for pricing and purchasing information.

Abstract

The gene expression dataset generated by DNA microarray technology contains expression profiles of huge quantities of genes for very small samples. Among these genes, a very small number of genes are informative for cancer sample identification and classification. Informative genes finding is an essential task of microarray gene expression data analysis. Here, a new hybrid gene selection-sample classification model (NHGSSC) is proposed for selection of relevant genes and classification of cancer samples. The NHGSSC performs two tasks-gene selection and sample classification. For gene selection, a new hybrid single filter and α-depth limited best first search based single wrapper method (SFα-BFSSW) is proposed. From these subsets, highly informative genes are selected by counting frequency of occurrence (FO) of every gene. Then SFα-BFSSW method-based ensemble classifier (SFα-BFSSWEC) is built by combining the classifiers created for the selected gene subsets. Experimental results demonstrate the superiority of the NHGSSC to other existing models.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom