The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
New Genetic Operator (Jump Crossover) for the Traveling Salesman Problem
Abstract
Inspired by nature, genetic algorithms (GA) are among the greatest meta-heuristics optimization methods that have proved their effectiveness to conventional NP-hard problems, especially the traveling salesman problem (TSP) which is one of the most studied supply chain management problems. This paper proposes a new crossover operator called Jump Crossover (JMPX) for solving the travelling salesmen problem using a genetic algorithm (GA) for near-optimal solutions, to conclude on its efficiency compared to solutions quality given by other conventional operators to the same problem, namely, Partially matched crossover (PMX), Edge recombination Crossover (ERX) and r-opt heuristic with consideration of computational overload. The authors adopt a low mutation rate to isolate the search space exploration ability of each crossover. The experimental results show that in most cases JMPX can remarkably improve the solution quality of the GA compared to the two existing classic crossover approaches and the r-opt heuristic.
Related Content
S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh.
© 2025.
16 pages.
|
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan.
© 2025.
22 pages.
|
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi.
© 2025.
22 pages.
|
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh.
© 2025.
24 pages.
|
U. Vignesh, Arpan Singh Parihar.
© 2025.
34 pages.
|
Sharmistha Dey, Krishan Veer Singh.
© 2025.
20 pages.
|
Kalpana Devi.
© 2025.
26 pages.
|
|
|