The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Neural Networks and Statistical Analysis for Time and Cost Prediction Models of Urban Redevelopment Projects
Abstract
Over the last few years, a plethora of public works have taken place, focusing towards urban renewal, in the greater Thessaloniki district. Municipality of Thessaloniki, provided data for twelve public projects of urban renewal. Mathematical models have been proposed for cost and time prediction based on regression analysis. Furthermore, the Fast Artificial Neural Network (FANN Tool) was applied, to predict the duration and the final cost of the project, using volume of earthwork, as input variable. Both approaches could facilitate project stakeholders, to forecast the projects' final delivery date and cost and provide early warnings for any deviation from the initial budget. The results indicate that neural networks perform better than regression analysis' models, in the case of urban renewal projects.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|