Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Neural Network for Big Data Sets

Neural Network for Big Data Sets
View Sample PDF
Author(s): Vo Ngoc Phu (Duy Tan University, Vietnam)and Vo Thi Ngoc Tran (Ho Chi Minh City University of Technology, Vietnam)
Copyright: 2022
Pages: 27
Source title: Research Anthology on Artificial Neural Network Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-2408-7.ch003


View Neural Network for Big Data Sets on the publisher's website for pricing and purchasing information.


Machine learning (ML), neural network (NN), evolutionary algorithm (EA), fuzzy systems (FSs), as well as computer science have been very famous and very significant for many years. They have been applied to many different areas. They have contributed much to developments of many large-scale corporations, massive organizations, etc. Lots of information and massive data sets (MDSs) have been generated from these big corporations, organizations, etc. These big data sets (BDSs) have been the challenges of many commercial applications, researches, etc. Therefore, there have been many algorithms of the ML, the NN, the EA, the FSs, as well as computer science which have been developed to handle these massive data sets successfully. To support for this process, the authors have displayed all the possible algorithms of the NN for the large-scale data sets (LSDSs) successfully in this chapter. Finally, they have presented a novel model of the NN for the BDS in a sequential environment (SE) and a distributed network environment (DNE).

Related Content

Vinod Kumar, Himanshu Prajapati, Sasikala Ponnusamy. © 2023. 18 pages.
Sougatamoy Biswas. © 2023. 14 pages.
Ganga Devi S. V. S.. © 2023. 10 pages.
Gotam Singh Lalotra, Ashok Sharma, Barun Kumar Bhatti, Suresh Singh. © 2023. 15 pages.
Nimish Kumar, Himanshu Verma, Yogesh Kumar Sharma. © 2023. 16 pages.
R. Soujanya, Ravi Mohan Sharma, Manish Manish Maheshwari, Divya Prakash Shrivastava. © 2023. 12 pages.
Nimish Kumar, Himanshu Verma, Yogesh Kumar Sharma. © 2023. 22 pages.
Body Bottom