IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Neural Network Approach Implementing Non-Linear Relevance Feedback to Improve the Performance of Medical Information Retrieval Systems

A Neural Network Approach Implementing Non-Linear Relevance Feedback to Improve the Performance of Medical Information Retrieval Systems
View Sample PDF
Author(s): Dimosthenis Kyriazis (National Technical University of Athens, Greece), Anastasios Doulamis (National Technical University of Athens, Athens, Greece)and Theodora Varvarigou (National Technical University of Athens, Greece)
Copyright: 2009
Pages: 18
Source title: Information Retrieval in Biomedicine: Natural Language Processing for Knowledge Integration
Source Author(s)/Editor(s): Violaine Prince (University Montpellier 2, France)and Mathieu Roche (University Montpellier 2, France)
DOI: 10.4018/978-1-60566-274-9.ch013

Purchase


Abstract

In this chapter, a non-linear relevance feedback mechanism is proposed for increasing the performance and the reliability of information (medical content) retrieval systems. In greater detail, the user who searches for information is considered to be part of the retrieval process in an interactive framework, who evaluates the results provided by the system so that the user automatically updates its performance based on the users’ feedback. In order to achieve the latter, we propose an adaptively trained neural network (NN) architecture that is able to implement the non- linear feedback. The term “adaptively” refers to the functionality of the neural network to update its weights based on the user’s content selection and optimize its performance.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom