IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Nanostructured Metal Oxide Gas Sensor: Response Mechanism and Modeling

Nanostructured Metal Oxide Gas Sensor: Response Mechanism and Modeling
View Sample PDF
Author(s): Jamal Mazloom (University of Guilan, Iran)and Farhad E. Ghodsi (University of Guilan, Iran)
Copyright: 2014
Pages: 41
Source title: Nanotechnology: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-5125-8.ch056

Purchase

View Nanostructured Metal Oxide Gas Sensor: Response Mechanism and Modeling on the publisher's website for pricing and purchasing information.

Abstract

This chapter provides a review of recent progress in gas sensor based on semiconducting metal oxide nanostructure. The response mechanism and development of various methods to enhancement of sensing properties receives the most attention. Theoretical models to explain the effects of morphology, additives, heterostructured composite and UV irradiation on response improvement were studied comprehensively. Investigations have indicated that 1D nanostructured metal oxide with unique geometry and physical properties display superior sensitivity to gas species. Also, the proposed conduction model in gas sensor based on 1D Metal oxide is discussed. Finally, the response mechanism of hierarchical and hollow nanostructures as novel sensing materials is addressed.

Related Content

Wassim Jaber. © 2024. 24 pages.
Hussein A.H. Jaber, Zahraa Saleh, Wassim Jaber, Adnan Badran, Hatem Nasser. © 2024. 17 pages.
Sakshi Garg, Kunal Arora, Sumita Singh, K. Nagarajan. © 2024. 20 pages.
Wassim Jaber. © 2024. 14 pages.
Ray Gutierrez Jr.. © 2024. 22 pages.
Wassim Jaber, Hussein A.H. Jaber, Ramzi Jaber, Zahraa Saleh. © 2024. 16 pages.
Zahraa Saleh, Wassim Jaber, Ali Jaber, Edmond Cheble, Mikhael Bechelany, Akram Hijazi, David Cornu, Ghassan Mahmoud Ibrahim. © 2024. 22 pages.
Body Bottom