IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Multi-Sensor Motion Fusion Using Deep Neural Network Learning

Multi-Sensor Motion Fusion Using Deep Neural Network Learning
View Sample PDF
Author(s): Xinyao Sun (University of Alberta, Canada), Anup Basu (University of Alberta, Canada)and Irene Cheng (University of Alberta, Canada)
Copyright: 2020
Pages: 19
Source title: Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-0414-7.ch032

Purchase

View Multi-Sensor Motion Fusion Using Deep Neural Network Learning on the publisher's website for pricing and purchasing information.

Abstract

Hand pose estimation for a continuous sequence has been an important topic not only in computer vision but also human-computer-interaction. Exploring the feasibility to use hand gestures to replace input devices, e.g., mouse, keyboard, joy-stick and touch screen, has attracted increasing attention from academic and industrial researchers. The fast advancement of hand pose estimation techniques is complemented by the rapid development of smart sensors technology such as Kinect and Leap. We introduce a hand pose estimation multi-sensor system. Two tracking models are proposed based on Deep (Recurrent) Neural Network (DRNN) architecture. Data captured from different sensors are analyzed and fused to produce an optimal hand pose sequence. Experimental results show that our models outperform previous methods with better accuracy, meeting real-time application requirement. Performance comparisons between DNN and DRNN, spatial and spatial-temporal features, and single- and dual- sensors, are also presented.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom