IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Multi-Layer Network Performance and Reliability Analysis

Multi-Layer Network Performance and Reliability Analysis
View Sample PDF
Author(s): Kostas N. Oikonomou (AT&T Labs Research, USA), Rakesh K. Sinha (AT&T Labs Research, USA)and Robert D. Doverspike (AT&T Labs Research, USA)
Copyright: 2011
Pages: 27
Source title: Interdisciplinary and Multidimensional Perspectives in Telecommunications and Networking: Emerging Findings
Source Author(s)/Editor(s): Michael Bartolacci (Penn State University - Berks, USA)and Steven R. Powell (California State Polytechnic University - Pomona, USA)
DOI: 10.4018/978-1-60960-505-6.ch008

Purchase

View Multi-Layer Network Performance and Reliability Analysis on the publisher's website for pricing and purchasing information.

Abstract

The authors describe a methodology for evaluating the performability (combined performance and reliability) of large communications networks. Networks are represented by a 4-level hierarchical model, consisting of traffic matrix, network graph, “components” representing failure modes, and reliability information. Network states are assignments of modes to the network components, which usually represent network elements and their key modules, although they can be more abstract. The components can be binary or multi-modal, and each of their failure modes may change a set of attributes of the graph (e.g. the capacity or cost of a link). Their methodology also captures the effect of automatic restoration against network failures by including two common rerouting methods. To compute network performability measures, including upper and lower bounds on their cumulative distribution functions, we augment existing probabilistic state-space generation algorithms with our new “hybrid” algorithm. To characterize the network failures of highest impact, we compute the Pareto boundaries of the network’s risk space. The authors have developed a network analysis tool called nperf that embodies this methodology. To illustrate the methodology and the practicality of the tool, they describe a performability analysis of three design alternatives for a large commercial IP backbone network. [Article copies are available for purchase from InfoSci-on-Demand.com]

Related Content

Raquel Sánchez Ruiz, Isabel López Cirugeda. © 2024. 22 pages.
Rocío Luque-González, Inmaculada Marín-López, Mercedes Gómez-López. © 2024. 22 pages.
Bima Sapkota, Xuwei Luo, Muna Sapkota, Murat Akarsu, Emmanuel Deogratias, Daphne Fauber, Rose Mbewe, Fidelis Mumba, Ram Krishna Panthi, Jill Newton, JoAnn Phillion. © 2024. 34 pages.
Karen Collett, Alina Slapac, Sarah A. Coppersmith, Jingxin Cheng. © 2024. 29 pages.
Maria Ines Marino, Stephanie Tadal, Nurhayat Bilge. © 2024. 25 pages.
Jaqueline Naidoo, Noah Borrero. © 2024. 19 pages.
Crystal Machado, Tami Seifert. © 2024. 20 pages.
Body Bottom