The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
MRI Brain Image Segmentation Using Interactive Multiobjective Evolutionary Approach
Abstract
The problem of image segmentation is frequently modeled as a problem of clustering the pixels of the images based on their intensity levels. In some recent studies, multiobjective clustering algorithms, where multiple cluster validity measures are optimized simultaneously for yielding robust clustering solutions have been proposed. It has been observed that the same set of validity measures optimized simultaneously do not generally perform well for all image datasets. In view of this, in this article, an interactive approach for multiobjective clustering is proposed for segmentation of multispectral Magnetic Resonance Image (MRI) of the human brain. In this approach, a human decision maker interacts with the multiobjective evolutionary clustering technique during execution in order to obtain the final clustering, the suitable set of validity measures for the input image, as well as the number of clusters by employing a variable-length encoding of the chromosomes. The effectiveness of the proposed method is demonstrated on many simulated normal and MS lesion MRI brain images.
Related Content
S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh.
© 2025.
16 pages.
|
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan.
© 2025.
22 pages.
|
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi.
© 2025.
22 pages.
|
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh.
© 2025.
24 pages.
|
U. Vignesh, Arpan Singh Parihar.
© 2025.
34 pages.
|
Sharmistha Dey, Krishan Veer Singh.
© 2025.
20 pages.
|
Kalpana Devi.
© 2025.
26 pages.
|
|
|