IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Molecular Network Analysis of Target RNAs and Interacting Proteins of TDP-43, a Causative Gene for the Neurodegenerative Diseases ALS/FTLD

Molecular Network Analysis of Target RNAs and Interacting Proteins of TDP-43, a Causative Gene for the Neurodegenerative Diseases ALS/FTLD
View Sample PDF
Author(s): Jun-Ichi Satoh (Meiji Pharmaceutical University, Japan)
Copyright: 2013
Pages: 22
Source title: Bioinformatics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-3604-0.ch052

Purchase


Abstract

TAR DNA-binding protein-43 (TDP-43) is an evolutionarily conserved nuclear protein that regulates gene expression by forming a multimolecular complex with a wide variety of target RNAs and interacting proteins. Abnormally phosphorylated, ubiquitinated, and aggregated TDP-43 proteins constitute a principal component of neuronal and glial cytoplasmic and nuclear inclusions in the brains of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), establishing a novel clinical entity designated TDP-43 proteinopathy. Although increasing evidence suggests that the neurodegenerative process underlying ALS and FTLD is attributable to a toxic gain of function or a loss of cellular function of TDP-43, the precise molecular mechanisms remain largely unknown. Recent advances in systems biology enable us to characterize the global molecular network extracted from large-scale data of the genome, transcriptome, and proteome with the pathway analysis tools of bioinformatics endowed with a comprehensive knowledge base. The present study was conducted to characterize the comprehensive molecular network of TDP-43 target RNAs and interacting proteins, recently identified by deep sequencing with next-generation sequencers and mass spectrometric analysis. The results propose the systems biological view that TDP-43 serves as a molecular coordinator of the RNA-dependent regulation of gene transcription and translation pivotal for performing diverse neuronal functions and that the disruption of TDP-43-mediated molecular coordination induces neurodegeneration in ALS and FTLD.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom