IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Modeling and Optimization of Abrasive Water Jet Cutting of Kevlar Fiber-Reinforced Polymer Composites

Modeling and Optimization of Abrasive Water Jet Cutting of Kevlar Fiber-Reinforced Polymer Composites
View Sample PDF
Author(s): Tauseef Uddin Siddiqui (M.J.P. Rohilkhand University, India)and Mukul Shukla (University of Johannesburg, South Africa and Motilal Nehru National Institute of Technology (MNNIT), India)
Copyright: 2012
Pages: 25
Source title: Computational Methods for Optimizing Manufacturing Technology: Models and Techniques
Source Author(s)/Editor(s): J. Paulo Davim (University of Aveiro, Portugal)
DOI: 10.4018/978-1-4666-0128-4.ch011

Purchase

View Modeling and Optimization of Abrasive Water Jet Cutting of Kevlar Fiber-Reinforced Polymer Composites on the publisher's website for pricing and purchasing information.

Abstract

This chapter presents a detailed study of abrasive water jet (AWJ) cutting of thin and thick Kevlar fiber-reinforced polymer (FRP) composites used in transport aircraft and anti-ballistic applications. Kevlar composites are considered to be very challenging to machine using traditional techniques. Most of the research conducted in the area of AWJ cutting has been limited to single response optimization. However, in real life machining, the performance of a process/product demands multi-objective optimization (MOO). No work has been reported till now using different MOO techniques for AWJ cutting of Kevlar FRP composites. Experimental modeling of depth of cut and various design of experiments based single and multi-objective optimization studies are presented here. Statistical analysis of variance has been performed to rank the different process parameters and estimate their effects on various AWJ cut kerf quality characteristics. The studies conducted in this chapter are likely to prove beneficial to the AWJ community in performing modeling and simultaneous optimization of multiple quality characteristics.

Related Content

Poshan Yu, Zixuan Zhao, Emanuela Hanes. © 2023. 29 pages.
Subramaniam Meenakshi Sundaram, Tejaswini R. Murgod, Madhu M. Nayak, Usha Rani Janardhan, Usha Obalanarasimhaiah. © 2023. 20 pages.
Rekha R. Nair, Tina Babu, Kishore S.. © 2023. 23 pages.
Wasswa Shafik. © 2023. 22 pages.
Jay Kumar Jain, Dipti Chauhan. © 2023. 24 pages.
George Makropoulos, Dimitrios Fragkos, Harilaos Koumaras, Nancy Alonistioti, Alexandros Kaloxylos, Vaios Koumaras, Theoni Dounia, Christos Sakkas, Dimitris Tsolkas. © 2023. 19 pages.
Shouvik Sanyal, Kalimuthu M., Thangaraja Arumugam, Aruna R., Balaji J., Ajitha Savarimuthu, Chandan Chavadi, Dhanabalan Thangam, Sendhilkumar Manoharan, Shasikala Patil. © 2023. 17 pages.
Body Bottom