IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Mobile/Wireless Robot Navigation

Mobile/Wireless Robot Navigation
View Sample PDF
Author(s): Amina Waqar (National University of Computers and Emerging Sciences, Pakistan)
Copyright: 2014
Pages: 9
Source title: Robotics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-4607-0.ch018

Purchase

View Mobile/Wireless Robot Navigation on the publisher's website for pricing and purchasing information.

Abstract

Sensor-based localization has been found to be one of the most preliminary issues in the world of Mobile/Wireless Robotics. One can easily track a mobile robot using a Kalman Filter, which uses a Phase Locked Loop for tracing via averaging the values. Tracking has now become very easy, but one wants to proceed to navigation. The reason behind this is that tracking does not help one determine where one is going. One would like to use a more precise “Navigation” like Monte Carlo Localization. It is a more efficient and precise way than a feedback loop because the feedback loops are more sensitive to noise, making one modify the external loop filter according to the variation in the processing. In this case, the robot updates its belief in the form of a probability density function (pdf). The supposition is considered to be one meter square. This probability density function expands over the entire supposition. A door in a wall can be identified as peak/rise in the probability function or the belief of the robot. The mobile updates a window of 1 meter square (area depends on the sensors) as its belief. One starts with a uniform probability density function, and then the sensors update it. The authors use Monte Carlo Localization for updating the belief, which is an efficient method and requires less space. It is an efficient method because it can be applied to continuous data input, unlike the feedback loop. It requires less space. The robot does not need to store the map and, hence, can delete the previous belief without any hesitation.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom