The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Metaheuristic Techniques for Test Case Generation: A Review
Abstract
The primary objective of software testing is to locate bugs as many as possible in software by using an optimum set of test cases. Optimum set of test cases are obtained by selection procedure which can be viewed as an optimization problem. So metaheuristic optimizing (searching) techniques have been immensely used to automate software testing task. The application of metaheuristic searching techniques in software testing is termed as Search Based Testing. Non-redundant, reliable and optimized test cases can be generated by the search based testing with less effort and time. This article presents a systematic review on several meta heuristic techniques like Genetic Algorithms, Particle Swarm optimization, Ant Colony Optimization, Bee Colony optimization, Cuckoo Searches, Tabu Searches and some modified version of these algorithms used for test case generation. The authors also provide one framework, showing the advantages, limitations and future scope or gap of these research works which will help in further research on these works.
Related Content
Babita Srivastava.
© 2024.
21 pages.
|
Sakuntala Rao, Shalini Chandra, Dhrupad Mathur.
© 2024.
27 pages.
|
Satya Sekhar Venkata Gudimetla, Naveen Tirumalaraju.
© 2024.
24 pages.
|
Neeta Baporikar.
© 2024.
23 pages.
|
Shankar Subramanian Subramanian, Amritha Subhayan Krishnan, Arumugam Seetharaman.
© 2024.
35 pages.
|
Charu Banga, Farhan Ujager.
© 2024.
24 pages.
|
Munir Ahmad.
© 2024.
27 pages.
|
|
|