The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Machine Automation Making Cyber-Policy Violator More Resilient: A Proportionate Study
Abstract
Cybersecurity is of global importance. Nearly all association suffer from an active cyber-attack. However, there is a lack of making cyber policy violator more resilient for analysts in proportionately analyzing security incidents. Now the question: Is there any proper technique of implementations for assisting automated decision to the analyst using a comparison study feature selection method? The authors take multi-criteria decision-making methods for comparison. Here the authors use CICDDoS2019 datasets consisting of Windows benign and the most vanguard for shared bouts. Hill-climbing algorithm may be incorporated to select best features. The time-based pragmatic data can be extracted from the mainsheet for classification as distributed cyber-policy violator or legitimate benign using decision tree (DT) with analytical hierarchy process (AHP) (DT-AHP), support vector machine (SVM) with technique for order of preference by similarity to ideal solution (SVM-TOPSIS) and mixed model of k-nearest neighbor (KNN AHP-TOPSIS) algorithms.
Related Content
G. Boopathy, Balaji Ganesan, P. Sivaprakasam, T. Kumaran.
© 2026.
42 pages.
|
G. Prasad.
© 2026.
14 pages.
|
Kishorebabu Dasari, Sujana Parry, Srinivas Mekala.
© 2026.
30 pages.
|
Chikesh Ranjan, Jonnalagadda Srinivas, P. S. Balaji, Kaushik Kumar.
© 2026.
24 pages.
|
G. Ananthi, S. Mehala Shevani, P. Priyadharshini Devi.
© 2026.
24 pages.
|
G. Prasad, Snehal Malik, Aadya Gupta, Yash Nigam.
© 2026.
26 pages.
|
Dhirendra Patel, M. L. Azad.
© 2026.
36 pages.
|
|
|