Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Linguistic Indexing of Images with Database Mediation

Linguistic Indexing of Images with Database Mediation
View Sample PDF
Author(s): Emmanuel Udoh (Sullivan University, USA)
Copyright: 2009
Pages: 6
Source title: Encyclopedia of Information Science and Technology, Second Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-60566-026-4.ch385


View Linguistic Indexing of Images with Database Mediation on the publisher's website for pricing and purchasing information.


Computer vision or object recognition complements human or biological vision using techniques from machine learning, statistics, scene reconstruction, indexing and event analysis. Object recognition is an active research area that implements artificial vision in software and hardware. Some application examples are autonomous robots, surveillance, indexing databases of pictures and human computer interaction. This visual aid is beneficial to users, because humans remember information with greater accuracy when it is presented visually than when it originates in writing, speech or in kinesthetic form. Linguistic indexing adds another dimension to computer vision by automatically assigning words or textual descriptions to images. This augments content-based image retrieval (CBIR) that extracts or searches for digital images in large databases. According to Li and Wang (2003), most of the existing CBIR projects are general-purpose image retrieval systems that search images visually similar to a query sketch. Current CBIR systems are incapable of assigning words automatically to images due to the inherent difficulty of recognizing numerous objects at once. This current situation is stimulating several research endeavors that seek to assign text to images, thereby improving image retrieval in large databases. To enhance information processing using object recognition techniques, current research has focused on automatic linguistic indexing of digital images (ALIDI). ALIDI requires a combination of mathematical, statistical, computational, and graphical backgrounds. Many researchers have focused on various aspects of linguistic processing such as CBIR (Ghosal, Ircing, & Khudanpur, 2005; Iqbal & Aggarwal, 2002, Wang, 2001) machine learning techniques (Iqbal & Aggarwal, 2002), digital library (Witen & Bainbridge, 2003) and statistical modeling (Li, Gray, & Olsen, 20004, Li & Wang, 2003). A growing approach is the utilization of statistical models as demonstrated by Li and Wang (2003). It entails building databases of images to be used for supervised learning. A trained system is used to recognize and identify new images with statistical error margin. This statistical modeling approach uses a hidden Markov model to extract representative information about any category of images analyzed. However, in using computer to recognize images with textual description, some of the researchers employ solely text-based approaches. In this article, the focus is on the computational and graphical aspects of ALIDI in a system that uses Web-based access in order to enable wider usage (Ntoulas, Chao, & Cho, 2005). This system uses image composition (primary hue and saturation) in the linguistic indexing of digital images or pictures.

Related Content

Christine Kosmopoulos. © 2022. 22 pages.
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh. © 2022. 21 pages.
Rajkumari Sofia Devi, Ch. Ibohal Singh. © 2022. 21 pages.
Ida Fajar Priyanto. © 2022. 16 pages.
Murtala Ismail Adakawa. © 2022. 27 pages.
Shimelis Getu Assefa. © 2022. 17 pages.
Angela Y. Ford, Daniel Gelaw Alemneh. © 2022. 22 pages.
Body Bottom