Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Learning Systems Engineering

Learning Systems Engineering
View Sample PDF
Author(s): Valentina Plekhanova (University of Sunderland, UK)
Copyright: 2005
Pages: 7
Source title: Encyclopedia of Information Science and Technology, First Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-59140-553-5.ch320


View Learning Systems Engineering on the publisher's website for pricing and purchasing information.


Traditionally multi-agent learning is considered as the intersection of two subfields of artificial intelligence: multi-agent systems and machine learning. Conventional machine learning involves a single agent that is trying to maximise some utility function without any awareness of existence of other agents in the environment (Mitchell, 1997). Meanwhile, multi-agent systems consider mechanisms for the interaction of autonomous agents. Learning system is defined as a system where an agent learns to interact with other agents (e.g., Clouse, 1996; Crites & Barto, 1998; Parsons, Wooldridge & Amgoud, 2003). There are two problems that agents need to overcome in order to interact with each other to reach their individual or shared goals: since agents can be available/unavailable (i.e., they might appear and/or disappear at any time), they must be able to find each other, and they must be able to interact (Jennings, Sycara & Wooldridge, 1998).

Related Content

Adeyinka Tella, Oluwakemi Titilola Olaniyi, Aderinola Ololade Dunmade. © 2021. 24 pages.
Md. Maidul Islam. © 2021. 17 pages.
Peterson Dewah. © 2021. 23 pages.
Lungile Precious Luthuli, Thobekile K. Buthelezi. © 2021. 14 pages.
Delight Promise Udochukwu, Chidimma Oraekwe. © 2021. 13 pages.
Julie Moloi. © 2021. 18 pages.
Mandisa Msomi, Lungile Preciouse Luthuli, Trywell Kalusopa. © 2021. 17 pages.
Body Bottom