IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Large-Scale Regulatory Network Analysis from Microarray Data: Application to Seed Biology

Large-Scale Regulatory Network Analysis from Microarray Data: Application to Seed Biology
View Sample PDF
Author(s): Anamika Basu (Gurudas College, India)and Anasua Sarkar (SMIEEE Government College of Engineering and Leather Technology, India)
Copyright: 2015
Pages: 26
Source title: Big Data Analytics in Bioinformatics and Healthcare
Source Author(s)/Editor(s): Baoying Wang (Waynesburg University, USA), Ruowang Li (Pennsylvania State University, USA)and William Perrizo (North Dakota State University, USA)
DOI: 10.4018/978-1-4666-6611-5.ch004

Purchase

View Large-Scale Regulatory Network Analysis from Microarray Data: Application to Seed Biology on the publisher's website for pricing and purchasing information.

Abstract

The inference of gene networks from gene expression data is known as “reverse engineering.” Elucidating genetic networks from high-throughput microarray data in seed maturation and embryo formation in plants is crucial for storage and production of cereals for human beings. Delayed seed maturation and abnormal embryo formation during storage of cereal crops degrade the quality and quantity of food grains. In this chapter, the authors perform comparative gene analysis of results of different microarray experiments in different stages of embryogenesis in Arabidopsis thaliana, and to reconstruct Gene Networks (GNs) related to various stages of plant seed maturation using reverse engineering technique. They also biologically validate the results for developing embryogenesis network on Arabidopsis thaliana with GO and pathway enrichment analysis. The biological analysis shows that different genes are over-expressed during embryogenesis related with several KEGG metabolic pathways. The large-scale microarray datasets of Arabidopsis thaliana for these genes involved in embryogenesis have been analysed in seed biology. The chapter also reveals new insight into the gene functional modules obtained from the Arabidopsis gene correlation networks in this dataset.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom