Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Knowledge Combination vs. Meta-Learning

Knowledge Combination vs. Meta-Learning
View Sample PDF
Author(s): Ivan Bruha (McMaster University, Canada)
Copyright: 2009
Pages: 7
Source title: Encyclopedia of Information Science and Technology, Second Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-60566-026-4.ch368


View Knowledge Combination vs. Meta-Learning on the publisher's website for pricing and purchasing information.


Research in intelligent information systems investigates the possibilities of enhancing their over-all performance, particularly their prediction accuracy and time complexity. One such discipline, data mining (DM), processes usually very large databases in a profound and robust way (Fayyad et al., 1996). DM points to the overall process of determining a useful knowledge from databases, that is, extracting high-level knowledge from low-level data in the context of large databases. This article discusses two newer directions in this field, namely knowledge combination and meta-learning (Vilalta & Drissi, 2002). There exist approaches to combine various paradigms into one robust (hybrid, multistrategy) system which utilizes the advantages of each subsystem and tries to eliminate their drawbacks. There is a general belief that integrating results obtained from multiple lower-level decision-making systems, each usually (but not required) based on a different paradigm, produce better performance. Such multi-level knowledgebased systems are usually referred to as knowledge integration systems. One subset of these systems is called knowledge combination (Fan et al., 1996). We focus on a common topology of the knowledge combination strategy with base learners and base classifiers (Bruha, 2004). Meta-learning investigates how learning systems may improve their performance through experience in order to become flexible. Its goal is to search dynamically for the best learning strategy. We define the fundamental characteristics of the meta-learning such as bias, and hypothesis space. Section 2 surveys the various directions in algorithms and topologies utilized in knowledge combination and meta-learning. Section 3 represents the main focus of this article: description of knowledge combination techniques, meta-learning, and a particular application including the corresponding flow charts. The last section presents the future trends in these topics.

Related Content

Christine Kosmopoulos. © 2022. 22 pages.
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh. © 2022. 21 pages.
Rajkumari Sofia Devi, Ch. Ibohal Singh. © 2022. 21 pages.
Ida Fajar Priyanto. © 2022. 16 pages.
Murtala Ismail Adakawa. © 2022. 27 pages.
Shimelis Getu Assefa. © 2022. 17 pages.
Angela Y. Ford, Daniel Gelaw Alemneh. © 2022. 22 pages.
Body Bottom