IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Investigation on Deep Learning Approach for Big Data: Applications and Challenges

Investigation on Deep Learning Approach for Big Data: Applications and Challenges
View Sample PDF
Author(s): Dharmendra Singh Rajput (VIT University, India), T. Sunil Kumar Reddy (Sri Venkateswara College of Engineering and Technology, India)and Dasari Naga Raju (Sri Venkateswara College of Engineering and Technology, India)
Copyright: 2020
Pages: 14
Source title: Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-0414-7.ch056

Purchase

View Investigation on Deep Learning Approach for Big Data: Applications and Challenges on the publisher's website for pricing and purchasing information.

Abstract

In recent years, big data analytics is the major research area where the researchers are focused. Complex structures are trained at each level to simplify the data abstractions. Deep learning algorithms are one of the promising researches for automation of complex data extraction from large data sets. Deep learning mechanisms produce better results in machine learning, such as computer vision, improved classification modelling, probabilistic models of data samples, and invariant data sets. The challenges handled by the big data are fast information retrieval, semantic indexing, extracting complex patterns, and data tagging. Some investigations are concentrated on integration of deep learning approaches with big data analytics which pose some severe challenges like scalability, high dimensionality, data streaming, and distributed computing. Finally, the chapter concludes by posing some questions to develop the future work in semantic indexing, active learning, semi-supervised learning, domain adaptation modelling, data sampling, and data abstractions.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom