IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Infant Cry Recognition System: A Comparison of System Performance based on CDHMM and ANN

Infant Cry Recognition System: A Comparison of System Performance based on CDHMM and ANN
View Sample PDF
Author(s): Yosra Abdulaziz Mohammed (University of Fallujah, Baghdad, Iraq)
Copyright: 2022
Pages: 19
Source title: Research Anthology on Artificial Neural Network Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-2408-7.ch029

Purchase

View Infant Cry Recognition System: A Comparison of System Performance based on CDHMM and ANN on the publisher's website for pricing and purchasing information.

Abstract

Cries of infants can be seen as an indicator of pain. It has been proven that crying caused by pain, hunger, fear, stress, etc., show different cry patterns. The work presented here introduces a comparative study between the performance of two different classification techniques implemented in an automatic classification system for identifying two types of infants' cries, pain, and non-pain. The techniques are namely, Continuous Hidden Markov Models (CHMM) and Artificial Neural Networks (ANN). Two different sets of acoustic features were extracted from the cry samples, those are MFCC and LPCC, the feature vectors generated by each were eventually fed into the classification module for the purpose of training and testing. The results of this work showed that the system based on CDHMM have better performance than that based on ANN. CDHMM gives the best identification rate at 96.1%, which is much higher than 79% of ANN whereby in general the system based on MFCC features performed better than the one that utilizes LPCC features.

Related Content

Vinod Kumar, Himanshu Prajapati, Sasikala Ponnusamy. © 2023. 18 pages.
Sougatamoy Biswas. © 2023. 14 pages.
Ganga Devi S. V. S.. © 2023. 10 pages.
Gotam Singh Lalotra, Ashok Sharma, Barun Kumar Bhatti, Suresh Singh. © 2023. 15 pages.
Nimish Kumar, Himanshu Verma, Yogesh Kumar Sharma. © 2023. 16 pages.
R. Soujanya, Ravi Mohan Sharma, Manish Manish Maheshwari, Divya Prakash Shrivastava. © 2023. 12 pages.
Nimish Kumar, Himanshu Verma, Yogesh Kumar Sharma. © 2023. 22 pages.
Body Bottom