IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Indoor Surveillance Application using Wireless Robots and Sensor Networks: Coordination and Path Planning

Indoor Surveillance Application using Wireless Robots and Sensor Networks: Coordination and Path Planning
View Sample PDF
Author(s): Anis Koubaa (Al-Imam Mohamed bin Saud University, Saudi Arabia & Polytechnic Institute of Porto (ISEP/IPP), Portugal), Sahar Trigui (National School of Engineering, Tunisia)and Imen Chaari (National School of Engineering, Tunisia)
Copyright: 2014
Pages: 38
Source title: Robotics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-4607-0.ch041

Purchase

View Indoor Surveillance Application using Wireless Robots and Sensor Networks: Coordination and Path Planning on the publisher's website for pricing and purchasing information.

Abstract

Mobile robots and Wireless Sensor Networks (WSNs) are enabling technologies of ubiquitous and pervasive applications. Surveillance is one typical example of such applications for which the literature proposes several solutions using mobile robots and/or WSNs. However, robotics and WSNs have mostly been considered as separate research fields, and little work has investigated the marriage of these two technologies. In this chapter, the authors propose an indoor surveillance application, SURV-TRACK, which controls a team of multiple cooperative robots supported by a WSN infrastructure. They propose a system model for SURV-TRACK to demonstrate how robots and WSNs can complement each other to efficiently accomplish the surveillance task in a distributed manner. Furthermore, the authors investigate two typical underlying problems: (1) Multi-Robot Task Allocation (MRTA) for target tracking and capturing and (2) robot path planning. The novelty of the solutions lies in incorporating a WSN in the problems’ models. The authors believe that this work advances the literature by demonstrating a concrete ubiquitous application that couples robotic and WSNs and proposes new solutions for path planning and MRTA problems.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom