The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Indoor Localization and Navigation for a Mobile Robot Equipped with Rotating Ultrasonic Sensors Using a Smartphone as the Robot's Brain
Abstract
Identifying the current location of a robot is a prerequisite for robot navigation. To localize a robot, one popular way is to use particle filters that estimate the posterior probabilistic density of a robot's state space. But this Bayesian recursion approach is computationally expensive. Most microcontrollers in a small mobile robot cannot afford it. The authors propose to use a smartphone as a robot's brain in which heavy-duty computations take place whereas an embedded microcontroller on the robot processes rudimentary sensors such as ultrasonic and touch sensors. In their design, a smartphone is wirelessly connected to a robot via Bluetooth by which distance measurements from the robot are sent to the smartphone. Then the smartphone takes responsible for computationally expensive operations like executing the particle filter algorithm. In this paper, the authors designed a mobile robot and its control architecture to demonstrate that the robot can navigate indoor environment while avoiding obstacles and localize its current position.
Related Content
Brij B. Gupta, Akshat Gaurav, Francesco Colace.
© 2025.
16 pages.
|
Akshat Gaurav, Varsha Arya.
© 2025.
16 pages.
|
Brij B. Gupta, Jinsong Wu.
© 2025.
22 pages.
|
Purwadi Agus Darwinto, Agung Mulyo Widodo, Nilla Perdana Agustina, Kadek Dwi Wahyuadnyana, Mosiur Rahaman.
© 2025.
30 pages.
|
Mosiur Rahaman, Karisma Trinda Putra, Bambang Irawan, Totok Ruki Biyanto.
© 2025.
30 pages.
|
Shaurya Katna, Sunil K. Singh, Sudhakar Kumar, Divyansh Manro, Amit Chhabra, Sunil Kumar Sharma.
© 2025.
22 pages.
|
Kwok Tai Chui, Varsha Arya, Akshat Gaurav, Shavi Bansal, Ritika Bansal.
© 2025.
22 pages.
|
|
|