IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Improving Prediction Accuracy via Subspace Modeling in a Statistical Geometry Based Computational Protein Mutagenesis

Improving Prediction Accuracy via Subspace Modeling in a Statistical Geometry Based Computational Protein Mutagenesis
View Sample PDF
Author(s): Majid Masso (George Mason University, USA)
Copyright: 2013
Pages: 15
Source title: Bioinformatics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-3604-0.ch054

Purchase


Abstract

A computational mutagenesis is detailed whereby each single residue substitution in a protein chain of primary sequence length N is represented as a sparse N-dimensional feature vector, whose M << N nonzero components locally quantify environmental perturbations occurring at the mutated position and its neighbors in the protein structure. The methodology makes use of both the Delaunay tessellation algorithm for representing protein structures, as well as a four-body, knowledge based, statistical contact potential. Feature vectors for each subset of mutants due to all possible residue substitutions at a particular position cohabit the same M-dimensional subspace, where the value of M and the identities of the M nonzero components are similarly position dependent. The approach is used to characterize a large experimental dataset of single residue substitutions in bacteriophage T4 lysozyme, each categorized as either unaffected or affected based on the measured level of mutant activity relative to that of the native protein. Performance of a single classifier trained with the collective set of mutants in N-space is compared to that of an ensemble of position-specific classifiers trained using disjoint mutant subsets residing in significantly smaller subspaces. Results suggest that significant improvements can be achieved through subspace modeling.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom