IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Improving the Naïve Bayes Classifier

Improving the Naïve Bayes Classifier
View Sample PDF
Author(s): Liwei Fan (National University of Singapore, Singapore)and Kim Leng Poh (National University of Singapore, Singapore)
Copyright: 2009
Pages: 5
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch130

Purchase

View Improving the Naïve Bayes Classifier on the publisher's website for pricing and purchasing information.

Abstract

A Bayesian Network (BN) takes a relationship between graphs and probability distributions. In the past, BN was mainly used for knowledge representation and reasoning. Recent years have seen numerous successful applications of BN in classification, among which the Naïve Bayes classifier was found to be surprisingly effective in spite of its simple mechanism (Langley, Iba & Thompson, 1992). It is built upon the strong assumption that different attributes are independent with each other. Despite of its many advantages, a major limitation of using the Naïve Bayes classifier is that the real-world data may not always satisfy the independence assumption among attributes. This strong assumption could make the prediction accuracy of the Naïve Bayes classifier highly sensitive to the correlated attributes. To overcome the limitation, many approaches have been developed to improve the performance of the Naïve Bayes classifier. This article gives a brief introduction to the approaches which attempt to relax the independence assumption among attributes or use certain pre-processing procedures to make the attributes as independent with each other as possible. Previous theoretical and empirical results have shown that the performance of the Naïve Bayes classifier can be improved significantly by using these approaches, while the computational complexity will also increase to a certain extent.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom