The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Image Segmentation Using Contour Models: Dental X-Ray Image Segmentation and Analysis
Abstract
Image segmentation is an important task in image processing, which is widely used in medical applications such as abnormality detection and after treatment progress monitoring. Conventionally, texture, region, and edge information are used for segmentation. Recently, the majority of image segmentation uses contour-based models. The problem of efficient segmentation in medical images is of great importance in disease diagnosis. Medical images suffer from weak boundaries, and placement of initial contour is a major issue. Level method is an effective method for segmentation of image as it has ability to tackle complex geometries. It helps to detect the precise location of the target region and help to prevent the boundary leakage problem. This chapter presents an overview of the advanced region and edge-based level set segmentation algorithms and their application in the dental x-ray images. Computer-aided diagnosis from x-ray images are of interest to clinicians in detection and accurate decision making. Case studies of multiple region segmentation from dental x-rays are presented.
Related Content
Aatif Jamshed, Pawan Singh Mehra, Debabrata Samanta, Tanaya Gupta, Bharat Bhardwaj.
© 2025.
28 pages.
|
Prachi Pundhir, Shaili Gupta.
© 2025.
34 pages.
|
Divya Upadhyay, Misha Kakkar.
© 2025.
14 pages.
|
Pranshu Saxena, Sanjay Kumar Singh, Gaurav Srivastav, Rashid Mamoon.
© 2025.
44 pages.
|
Adamya Gaur.
© 2025.
26 pages.
|
Rhythm Kulshrestha.
© 2025.
20 pages.
|
Sahil Aggarwal, Ruchi Jain, Aayush Agarwal, Sandeep Saxena, A. K. Haghi.
© 2025.
16 pages.
|
|
|