Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Identification of Geospatial Objects Using Spectral Pattern

Identification of Geospatial Objects Using Spectral Pattern
View Sample PDF
Author(s): Subhabrata Barman (Haldia Institute of Technology, India)
Copyright: 2019
Pages: 12
Source title: Environmental Information Systems: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-7033-2.ch038


View Identification of Geospatial Objects Using Spectral Pattern on the publisher's website for pricing and purchasing information.


Solar radiation on hitting a target surface may be transmitted, absorbed or reflected. Different materials reflect and absorb differently at different wavelengths. The reflectance spectrum of a material is a plot of the fraction of radiation reflected as a function of the incident wavelength and serves as a unique signature for the material. In principle, a material can be identified from its spectral reflectance signature if the sensing system has sufficient spectral resolution to distinguish its spectrum from those of other materials. This premise provides the basis for multispectral remote sensing. Nguyen Dinh Duong (1997) proposed a method for decomposition of multi-spectral image into several sub-images based on modulation (spectral pattern) of the spectral reflectance curve. The hypothesis roots from the fact that different ground objects have different spectral reflectance and absorption characteristics which are stable for a given sensor. This spectral pattern can be considered as invariant and be used as one of classification rules.

Related Content

Delphine Defossez. © 2022. 24 pages.
Pendo Shukrani Kasoga, Amani Gration Tegambwage. © 2022. 25 pages.
S. Jithender Kumar Naik, Malek Hassanpour. © 2022. 52 pages.
Ayele Ulfata Gelan, Ahmad Shareef AlAwadhi. © 2022. 42 pages.
Xin Sheng, Rangan Gupta. © 2022. 15 pages.
Joseph Dery Nyeadi, Kannyiri Thadious Banyen, Simon Akumbo Eugene Mbilla. © 2022. 30 pages.
Valentina Vinsalek Stipic. © 2022. 25 pages.
Body Bottom