IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Hydrodynamic Equations from Kinetic Theory: Fundamental Considerations

Hydrodynamic Equations from Kinetic Theory: Fundamental Considerations
View Sample PDF
Author(s): James W. Dufty (University of Florida, USA)and Aparna Baskaran (Syracuse University, USA)
Copyright: 2011
Pages: 36
Source title: Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice
Source Author(s)/Editor(s): Sreekanth Pannala (Oak Ridge National Laboratory, USA), Madhava Syamlal (National Energy Technology Laboratory, USA)and Thomas J. O'Brien (National Energy Technology Laboratory, USA)
DOI: 10.4018/978-1-61520-651-3.ch002

Purchase

View Hydrodynamic Equations from Kinetic Theory: Fundamental Considerations on the publisher's website for pricing and purchasing information.

Abstract

In this chapter, a theoretical description is provided for the solid (granular) phase of the gas-solid flows that are the focus of this book. Emphasis is placed on the fundamental concepts involved in deriving a macroscopic hydrodynamic description for the granular material in terms of the hydrodynamic fields (species densities, flow velocity, and the granular temperature) from a prescribed “microscopic” interaction among the grains. To this end, the role of the interstitial gas phase, body forces such as gravity, and other coupling to the environment are suppressed and retained only via a possible non-conservative external force and implicit boundary conditions. The general notion of a kinetic equation is introduced to obtain macroscopic balance equations for the fields. Constitutive equations for the fluxes in these balance equations are obtained from special “normal” solutions to the kinetic equation, resulting in a closed set of hydrodynamic equations. This general constructive procedure is illustrated for the Boltzmann-Enskog kinetic equation describing a system of smooth, inelastic hard spheres. For weakly inhomogeneous fluid states the granular Navier-Stokes hydrodynamic equations are obtained, including exact integral equations for the transport coefficients. A method to obtain practical solutions to these integral equations is described. Finally, a brief discussion is given for hydrodynamics beyond the Navier-Stokes limitations.

Related Content

Daniel A. Beysens, Yves Garrabos, Bernard Zappoli. © 2021. 31 pages.
Sakir Amiroudine. © 2021. 23 pages.
Lin Chen. © 2021. 57 pages.
Victor Emelyanov, Alexander Gorbunov, Andrey Lednev. © 2021. 49 pages.
Nitesh Kumar, Dipankar Narayan Basu, Lin Chen. © 2021. 22 pages.
Kazuhiro Matsuda, Masanori Inui. © 2021. 35 pages.
Lin Chen. © 2021. 51 pages.
Body Bottom