The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Hybrid Particle Swarm Optimization With Genetic Algorithm to Train Artificial Neural Networks for Short-Term Load Forecasting
Abstract
This research proposes a new training algorithm for artificial neural networks (ANNs) to improve the short-term load forecasting (STLF) performance. The proposed algorithm overcomes the so-called training issue in ANNs, where it traps in local minima, by applying genetic algorithm operations in particle swarm optimization when it converges to local minima. The training ability of the hybridized training algorithm is evaluated using load data gathered by Electricity Generating Authority of Thailand. The ANN is trained using the new training algorithm with one-year data to forecast equal 48 periods of each day in 2013. During the testing phase, a mean absolute percentage error (MAPE) is used to evaluate performance of the hybridized training algorithm and compare them with MAPEs from Backpropagation, GA, and PSO. Yearly average MAPE and the average MAPEs for weekdays, Mondays, weekends, Holidays, and Bridging holidays show that PSO+GA algorithm outperforms other training algorithms for STLF.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|