IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Hybrid Intrusion Detection Framework for Ad Hoc Networks

Hybrid Intrusion Detection Framework for Ad Hoc Networks
View Sample PDF
Author(s): Abdelaziz Amara Korba (Badji Mokhtar-Annaba University, Algeria), Mehdi Nafaa (Badji Mokhtar-Annaba University, Algeria)and Salim Ghanemi (Badji Mokhtar-Annaba University, Algeria)
Copyright: 2020
Pages: 35
Source title: Securing the Internet of Things: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-9866-4.ch060

Purchase

View Hybrid Intrusion Detection Framework for Ad Hoc Networks on the publisher's website for pricing and purchasing information.

Abstract

In this paper, a cluster-based hybrid security framework called HSFA for ad hoc networks is proposed and evaluated. The proposed security framework combines both specification and anomaly detection techniques to efficiently detect and prevent wide range of routing attacks. In the proposed hierarchical architecture, cluster nodes run a host specification-based intrusion detection system to detect specification violations attacks such as fabrication, replay, etc. While the cluster heads run an anomaly-based intrusion detection system to detect wormhole and rushing attacks. The proposed specification-based detection approach relies on a set of specifications automatically generated, while anomaly-detection uses statistical techniques. The proposed security framework provides an adaptive response against attacks to prevent damage to the network. The security framework is evaluated by simulation in presence of malicious nodes that can launch different attacks. Simulation results show that the proposed hybrid security framework performs significantly better than other existing mechanisms.

Related Content

Nalini M.. © 2023. 22 pages.
Balachandar S., Chinnaiyan R.. © 2023. 19 pages.
V. A. Velvizhi, G. Senbagavalli, S. Malini. © 2023. 29 pages.
Amuthan Nallathambi, Kannan Nova. © 2023. 25 pages.
Amuthan Nallathambi, Sivakumar N., Velrajkumar P.. © 2023. 17 pages.
Nayana Hegde, Sunilkumar S. Manvi. © 2023. 18 pages.
Udayakumar K., Ramamoorthy S., Poorvadevi R.. © 2023. 26 pages.
Body Bottom