IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Histopathological Image Analysis in Medical Decision Making: Classification of Histopathological Images Based on Deep Learning Model

Histopathological Image Analysis in Medical Decision Making: Classification of Histopathological Images Based on Deep Learning Model
View Sample PDF
Author(s): R. Meena Prakash (Sethu Institute of Technology, India)and Shantha Selva Kumari R. (Mepco Schlenk Engineering College, India)
Copyright: 2023
Pages: 13
Source title: Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-7544-7.ch047

Purchase


Abstract

Digital pathology is one of the significant methods in the medicine field to diagnose and treat cancer. The cell morphology and architecture distribution of biopsies are analyzed to diagnose the spread and severity of the disease. Manual analyses are time-consuming and subjected to intra- and inter-observer variability. Digital pathology and computer-aided analysis aids in enormous applications including nuclei detection, segmentation, and classification. The major challenges in nuclei segmentation are high variability in images due to differences in preparation of slides, heterogeneous structure, overlapping clusters, artifacts, and noise. The structure of the proposed chapter is as follows. First, an introduction about digital pathology and significance of digital pathology techniques in cancer diagnosis based on literature survey is given. Then, the method of classification of histopathological images using deep learning for different datasets is proposed with experimental results.

Related Content

Aatif Jamshed, Pawan Singh Mehra, Debabrata Samanta, Tanaya Gupta, Bharat Bhardwaj. © 2025. 28 pages.
Prachi Pundhir, Shaili Gupta. © 2025. 34 pages.
Divya Upadhyay, Misha Kakkar. © 2025. 14 pages.
Pranshu Saxena, Sanjay Kumar Singh, Gaurav Srivastav, Rashid Mamoon. © 2025. 44 pages.
Adamya Gaur. © 2025. 26 pages.
Rhythm Kulshrestha. © 2025. 20 pages.
Sahil Aggarwal, Ruchi Jain, Aayush Agarwal, Sandeep Saxena, A. K. Haghi. © 2025. 16 pages.
Body Bottom